Mona Kiefer & Philipp Piroth*
Alexander Gehlen University of Economics and Society Ludwigshafen, GER Sevenclicks.org, Eindhoven, NL

Freedom or Burden of choice?

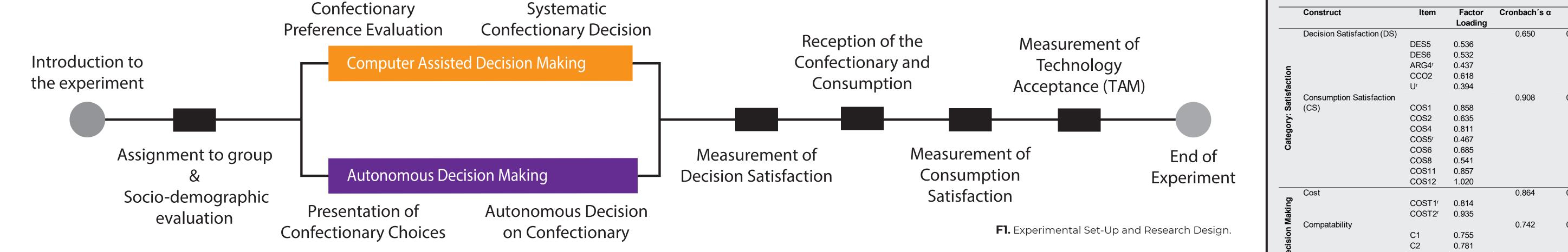
On the satisfaction with computer-assisted decsision-making

INTRO

Responsibility of machines is rising as we delegate an increasing number of decisions to algorithms and smart devices decisions that could potentially go as far as signifying life or death[2]. This trend is also reflected in the development of academic interest in "Intelligent Decision Systems"[7]. While we acknowledge the

academic emphasis on significant applications, our investigation focuses on the perceived happiness and satisfaction with computer assisted decision making (CADM) in an everyday scenario; in this study selecting confectionary. Research has shown that limiting the amount of options can lead to an increase in decision satisfaction[3, 8]. CADM-applications are likely to lower the amount of options and provide compelling guidance on the selection.

On the other hand however, arises the question how the individual perceives ceding autonomy of decision-making to a machine.


ADDITIONAL INFO

A1. Mean Value Comparison and t-Test statistics.

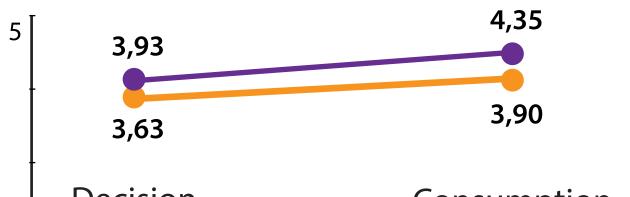
_	Control Group	Test Group	t-Test Statistics
DS	3.93 (.36)	3.63 (.56)	<i>t</i> ₍₇₈₎ =2.85, p=0.006
CS	4.35 (.62)	3.90 (.75)	<i>t</i> ₍₇₅₎ =2.94, p=0.004
	<i>t</i> ₍₃₉₎ =5.07,p=0.000	<i>t</i> ₍₃₉₎ =2.25, p=0.030	

Notes: Standard deviations in parantheses DS=Decision Satisfaction; CS=Consumption Satisfaction

METHOD & SAMPLE

For the decision process itself we conducted an experiment with two given scenarios:

In the first scenario participants were obliged to pick a confectionery from a given range(24 options) of sweets. The participant has complete freedom about his or hers choice. After deciding for a confectionery the participant was evalu-


ated on their decision satisfaction. After subsequent consumption we measured the perceived satisfaction again to account for potential changes due to the consumption.

For scenario 2 the participant was placed in front of a computer screen running the front-end of the programmed questionnaire. The front-end was designed in

a way that would facilitate usage; somewhat similar to a standard questionnaire commonly administered in scientific studies. After finishing all relevant questions to the computer-assistant 's assessment consumers were presented with a computer based choice and subsequently assessed on decision and consumption satisfaction.

	Construct	Item	Factor Loading	Cronbach's α	CR	AVE
	Decision Satisfaction (D	OS)		0.650	0.631	0.25
	· ·	DES5	0.536			
		DES6	0.532			
۲		ARG4 ^r	0.437			
tio		CCO2	0.618			
Category: Satisfaction		U ^r	0.394			
tist	Consumption Satisfaction	on		0.908	0.909	0.56
Sa	(CS)	COS1	0.858			
ž		COS2	0.635			
go		COS4	0.811			
ate		COS5 ^r	0.467			
с О		COS6	0.685			
		COS8	0.541			
		COS11	0.857			
		COS12	1.020			
	Cost			0.864	0.868	0.76
ing		COST1 ^r	0.814			
ak		COST2 ^r	0.935			
≥ ⊆	Compatability			0.742	0.742	0.59
		C1	0.755			
SCIS		C2	0.781			
Computer-Based Decision Making	Perceived Use			0.901	0.897	0.68
eq		PU1	0.798			
285		PU2	0.739			
- L		PU3	0.748			
nr		PU4	1.004			
<u>d</u>	Perceived Ease of Use			0.830	0.833	0.62
5		PEOU1	0.801			
		PEOU2	0.823			
e		PEOU3	0.745			
an	Attitude			0.869	0.868	0.68
ept		AT1	0.866			
5		AT2	0.796			
∢		AT3	0.824			
2 Z	Behavioural Intention			0.706	0.754	0.52
eg		BI1	0.863			
Category: Acceptance of		BI2	0.830			
-		BI3	0.390			
	s: N=80. r, Reverse-Code items were removed to i				e variance	extrac

ANALYSIS & FINDINGS

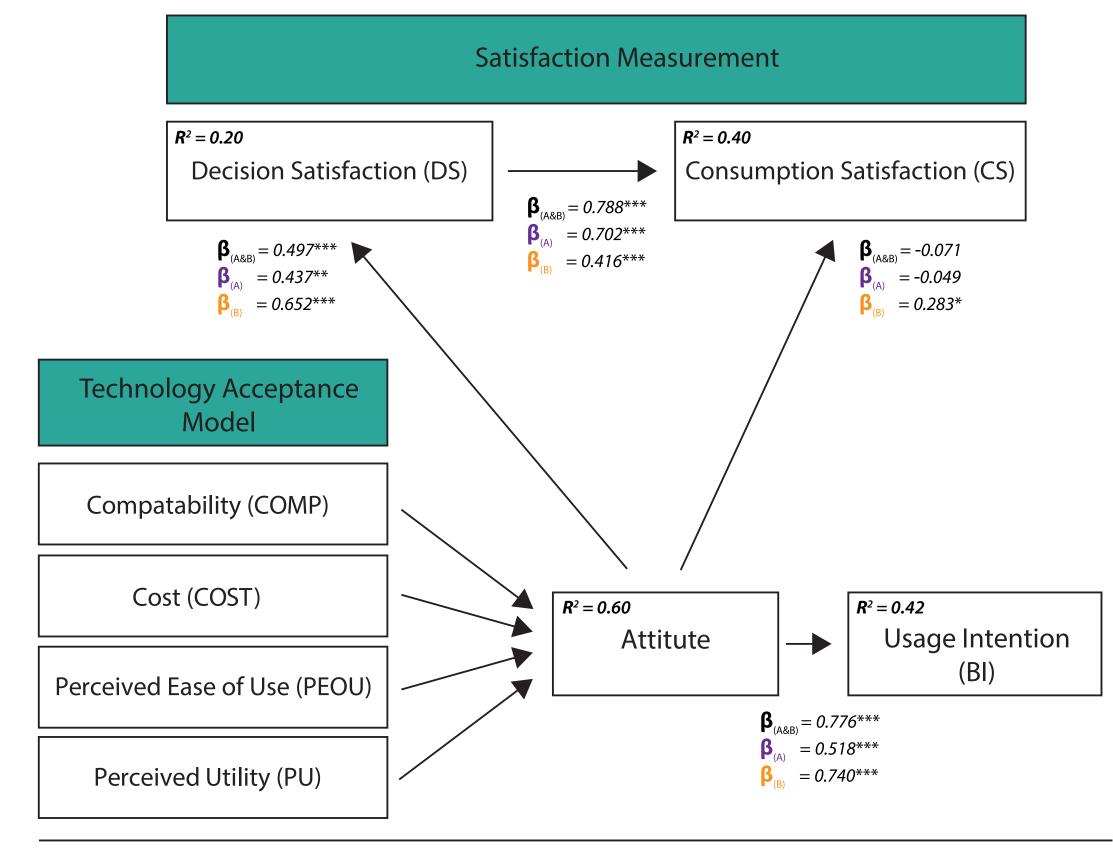
Differences in Satisfaction level

We can report significant differences in the DS (t(78)=2.85, p.006) and CS (*t*(75.02)=2.94, *p*=.004) levels between test and control group. In both scenarios the control group was significantly more satisfied with their choice than

the test group. Satisfaction significantly increased between point of decison and consumption for both groups (Control group: t(39)=-5.07, p=.000; test group: *t(39)=2.25, p=.030*). Table **A1** and **F2** report the respective mean value levels and statistical computations.

Decision	Consumption
Satisfaction	Satisfaction

F2. Mean Value Levels for DS and CS between the groups (c.f. A)


Moderating Effects on Satisfaction Levels

In order to construct our final SEM we first conducted confirmatory factor analysis using IBM AMOS (Vers. 26) and Smart PLS (Vers. 3.2.8) for SEM. We can report that modelling our initial causal construct resulted in somewhat unsatisfying validity yet satisfying discriminant and convergent reliability (see A2, A3) when applying recommendations by relevant literature [5, 6] and tolerable model fit ($X^2 = 26,821.239$; SRMR=0.09).

There is some issues that will be laid out first: One inter-correlation (DS and CS) violated Fornell-Larcker Criterion [5] but as we assumed correlation between these constructs this is of little surprise. Despite all efforts to smoothen out the data patterns the fit of the data to the model remains questionable. We will still report our findings but note that the generisability and significance of our reportings may be called into valid question.

The analysis of relationships within our constructs suggestes that there is a significant influence (β =.495, p<.07). Furthermore DS was a solid predictor for CS ($\beta = .788$, p < .07) explaining 40 per cent in variance (R^2 =.40). Attitude, furthermore showed strong influence on the usage intention (β =.776, p<.07) and explains similar large proportions of variance (R^2 =.42).

Multigroup Analysis

Notes: Group A = Control Group; Group B = Test Group. R^2 = Coefficient of Determination; β = Path Coefficient; n = 80. Significant at: ***p < 0.01; **p < 0.05; *p < 0.10.

F3. Final structrual equation model with multigroup analysis results.

COST	0.000	-0.165	-0.076	0.077				
DS	0.618	0.457	0.809	0.071	0.509			
BI	0.767	0.737	0.328	-0.232	0.543	0.727		
PEOU	0.418	0.212	0.163	0.467	0.255	0.280	0.790	
PU	0.762	0.697	0.242	0.003	0.337	0.692	0.259	0.829
Notes: ATT, attitude; COMP, compatibility; CS, consumption satisfaction; COST, cost; DS, decision satisfaction; BI, behavioural intention to use; PEOU, perceived ease of use; PU, perceived usefulness.								

A4. Multigroup Analysis Results

Path	β-Coefficient	β-Coefficent	p-Value	p-Value	
	(control group)	(test group)	(control group)	(test group)	
ATT -> CS	-0.049	0.283	0.716	0.051	
ATT -> DS	0.437	0.652	0.010	0.000	
ATT -> BI	0.518	0.740	0.005	0.000	
COMP -> ATT	0.525	0.161	0.000	0.078	
COST -> ATT	0.104	-0.212	0.457	0.064	
DS -> CS	0.702	0.416	0.000	0.005	
PEOU -> ATT	0.085	0.417	0.645	0.000	
PU -> ATT	0.275	0.593	0.091	0.000	

Notes: ATT, attitude; COMP, compatibility; CS, consumption satisfaction; COST, cost; DS, decision satisfaction; BI, behavioural intention to use; PEOU, perceived ease of use; PU, perceived usefulness.

REFERENCES

Anderson, J. C., & Gerbing, D. W. (1988): Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psycho-

We furthermore ran multigroup analysis on the final SEM to evaluate on the relationship between computer-assisted decision making and perception of its helpfulness in decision making between the two groups. We found several significant differences between the two groups. First, the groups strongly varied in their influence of attitude towards CS (control group: β =-.049, p=.716; test group: β =.283, p=.051). Second, the dimen-

sions of the TAM construct (particularly COST) found differing levels of influence between the groups. Interestingly, the path coefficient from attitude towards CADM was fairly high in both groups (control group: β =-.518, p=.010; test group: β =.740, p=.000). The difference in this effect size may however be explained by the previous exposition towards a CADM system and, therefore might have been superimposed. \rightarrow A4

DISCUSSION & CONCLUSION

We find that satisfaction levels with the usage of CADM were lower than those decisions that resulted from autonomous choices. This is of little surprise, however we find stronger appreciation of CADM systems for the test group. While this effect may be to a certain degree superimposed we nevertheless find it amusing that – despite the lower overall satisfaction – a preference for these systems was

voiced that even supports the usage in daily shopping situations. Researchers generally find a large acceptance of digital concepts in supermarkets amongst German consumers [4].

A re-evaluation of the used scales should provide some insight into improvements in terms of the measurement model. Furthermore, our study faciliated a fairly simple questionnaire that was presented

as an artificial intelligence making elaborate confectionary decisions. However, implementation of real data from participants and actual AI embedding would enhance this research significantly. The need of further digital concepts in shopping processes and the evaluation of the user experience process seems to be a fruitful research area.

logical Bulletin, 103(3), 411-423.

Awad, E., Dsouza, S., Kim, R. et al. (2018): The Moral Machine experiment. Nature 563, 59-64 (2018). https://doi.org/10.1038/s41586-018-0637-6.

Broniarczyk, S. M., Hoyer, W. D., & McAlister, L. (1998): Consumers' Per-3 ceptions of the Assortment Offered in a Grocery Category: The Impact of Item Reduction. Journal of Marketing Research, 35(2), 166.

[4] Donath, T. (2019): Online-Shopping: Nutzer, Trends und Potenziale. In: Trendmonitor Deutschland, available at: https://trendmonitor-deutschland.de/author/thomas-donath/, last accessed on 22.02.2020.

Fornell, C. & Larcker, D. F. (1981): Evaluating structural equation models 151 with unobservable variables and measurement error. Journal of Market ing Research, 18, 39–50.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010): Multivari-[6] ate data analysis, 7. ed., Pearson Prentice Hall, Upper Saddle River, NJ.

Phillips-Wren, Gloria, Ichalkaranje, Nikhil (2008): Intelligent Decision Making: An Al-Based Approach.

[8] Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002): Maximizing versus satisficing: Happiness is a matter of choice. Journal of Personality and Social Psychology, 83(5), 1178–1197